A Low-Order Dynamic Model for Planar Solid Oxide Fuel Cells Using Online Iterative Computation

نویسنده

  • Jing Sun
چکیده

High-fidelity dynamic models of solid oxide fuel cells (SOFCs) capture the spatial distribution of key performance variables by considering the cells as distributed parameter systems. As such, they are often complex and require extensive computational resources. In this paper, driven by the need to support the control strategy development and system optimization, we develop a low-order SOFC model by approximating the mass and energy balance dynamics in the fuel and air bulk flows using quasi-static relations. However, due to the coupling between the quasi-static mass balance and current distribution, this approximation leads to a large set of coupled nonlinear algebraic equations that have to be solved online using iterative computation. In order to mitigate the computational cost involved, an efficient iterative algorithm is proposed to solve these equations. The new algorithm requires to iterate on only one variable—the cell voltage—to determine the current and flow compositions and their distributions. The low-order model with 16 states is compared to the baseline model, which has 160 states that incorporates fully the mass and energy balance dynamics. Simulations are performed to evaluate the model performance for both steady-state and transient operations, and to assess the computational cost associated with the low-order and full order models. It is shown that the low-order model closely matches the original baseline model, while the computation time is reduced by more than 50% compared to the baseline model. DOI: 10.1115/1.2931491

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation

The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...

متن کامل

A New Numerical Study Method of Thermal Stress Distribution and Tortuosity Effectiveness in an Anode Porous Electrode for a Planar Solid Oxide Fuel Cell

A fuel cell is an electro-chemical tool capable of converting chemical energy into electricity. High operating temperature of solid oxide fuel cell, between 700oC to 1000oC, causes thermal stress. Thermal stress causes gas escape, structure variability and cease operation of the SOFC before its lifetime.The purpose of the current paper is to present a method that predicts ...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

A New Sensitivity Study of Thermal Stress Distribution for a Planar Solid Oxide Fuel Cell

Converting chemical energy into electricity is done by an electro-chemical device known as a fuel cell. Thermal stress is caused at high operating temperature between 700 oC to 1000 oC of SOFC. Thermal stress causes gas escape, structure variability, crack initiation, crack propagation, and cease operation of the SOFC before its lifetime. The aim of this study is to presen...

متن کامل

Dynamic Analysis and Optimal Design of FLPSS for Power Network Connected Solid Oxide Fuel Cell Using of PSO

This paper studies the theory and modeling manner of solid oxide fuel cell (SOFC) into power network and its effect on small signal stability. The paper demonstrates the fundamental module, mathematical analysis and small signal modeling of the SOFC connected to single machine infinite bus (SMIB) system. The basic contribution of the study is to attenuate the low frequency oscillations by optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008